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Interacting populations often create complicated spatiotemporal behavior, and understanding it is a basic
problem in the dynamics of spatial systems. We study the two-species case by simulations of a host-parasitoid
model. In the case of coexistence, there are spatial patterns leading to noise-sustained oscillations. We intro-
duce a measure for the patterns, and explain the oscillations as a consequence of a time-scale separation and
noise. They are linked together with the patterns by letting the spreading rates depend on instantaneous
population densities. Applications are discussed.
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A fundamental aim in studying population dynamics is to
understand species interactions. A paradigmatic, still interest-
ing, case is that of two species �1�, where one feeds or lives
from the other. These may be predators and their prey or
parasitoids living on the expense of hosts. If the interaction is
strong and if the parasitoid or predator is specialized, its
growth will have a delayed negative feedback as its resource
is diminished. In such cases, oscillations are an inherent fea-
ture �2�. Many surface reactions also have similar dynamics
�3�.

The classical ways of looking at such systems assume
fully stirred populations. The encounters between individuals
are assumed to be proportional to the product of their densi-
ties, analogously to the mass action principle in chemistry
�1�. This assumption is also at the heart of the mean-field-
like Lotka-Volterra equations. In general, however, spreading
and interaction are restricted in space. In this case, correlated
structures arise and the assumption about complete mixing
no longer holds �4�.

If the parasite abundance is small, any feedback effect is
weak. Population sizes then show no oscillations, and the
predating species is locally concentrated in a clusterlike ar-
rangement. This has been theoretically studied in Ref. �5�.
With strong feedback spatiotemporal patterns emerge in a
multitude of forms. These include disordered flamelike pat-
terns �6–8�, and ripplelike spatiotemporal ones �9�. There is
also a large body of work on similar patterning in individual-
based models �e.g., �10��, in statistical physics �11,12�, and in
calcium concentration oscillations in living cells �13�. A
paradigmatic pattern-forming system is the complex
Ginzburg-Landau equation �CGLE� �14�, which exhibits
spiral-like geometries.

Voles in Northern Britain �15�, mussels in the Wadden sea
�16�, and lemmings in Northern Europe �17�, are good ex-
amples of empirical observations of such patterning. These
involve either predation or being predated. Spatial structures
weaken the interactions since species tend to be aggregated
within themselves. They also provide the prey a refuge since
around the prey there are less predators. Therefore, spatial
inhomogeneity can stabilize the dynamics and promote co-
existence �4,7,18�.

Here, we analyze the full spatiotemporal dynamics of two
interacting species using instantaneous configurations and

time series of the population densities. We introduce a mea-
sure for the level of patterning in such systems. When the
patterns form, one observes persistent oscillations in the
population densities. We show that the underlying dynamics
follows a particular logic: It originates in the response of the
rates to changes in instantaneous densities, and the emerging
system proves different from the limit cycle in Lotka-
Volterra systems, or recent developments where three-
species models have been mapped �19,20� to CGLE. The
present mechanism works by the interplay of oscillatory
transients to a stable fixed point and stochasticity. The re-
sponse of the interaction rates is due to spatial correlations.
The mechanism does not in fact need any nonlinearities to
work, which will become evident below based on simula-
tions and effective equations describing them.

We study a host-parasitoid model in discrete time and
space. It is inspired by �21�, but has a wider interaction range
as in the incidence function models of metapopulation dy-
namics �22�. The model describes annual host-parasitoid dy-
namics on a two-dimensional square lattice � �23�. At each
time step, a site x can be either empty �in state e� or popu-
lated by a host without �state h� or with parasitoids �state p�.
Transitions between the states are cyclic, e→h→p→e, ne-
glecting possible spontaneous deaths of nonparasitized hosts
assumed to be rare, for simplicity. Although this means that
hosts live forever if there are no parasitoids, this is not a
serious restriction; in coexistence it boils down to assuming
faster extinction for the parasitoids than for the hosts.
The model can also be described as a susceptible-infected-
recovered �SIR� model with rebirth.

At each site transition probabilities depend on the sur-
rounding populations through the connectivity

I��x,t� = �
x���

k���x − x������x�,t� �1�

of site x with respect to species � �h or p�. Here ���x�=1 if
the state of x is �, and 0 else. The kernel k� has an exponen-
tial decay with the scale w� and is normalized by
�x��k���x��=1. Dispersal lengths are chosen since these are
biologically motivated �22� and lead to generalizability.
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In a time step, the transition e→h takes place with prob-
ability min�1,�hIh� and h→p with probability min�1,�pIp�
�in the parameter range of interest, ��I��1 practically al-
ways�. Parasitized hosts may die �p→e� with probability �
irrespective of the surroundings. Note that they do not repro-
duce. Periodic boundary conditions and parallel updates are
used. There are two absorbing states, an empty lattice �e� and
one full of hosts. Figure 1�a� shows an example with
coexistence.

One finds moving regions predominantly in one of the
three states. To quantify these patterns, we define the domi-
nance regions �Fig. 1�b�� as follows. By smoothing one ob-
tains continuous densities

���x,t� = �x���
1

2	
2 e−�x − x��2/2
2
���x�,t� .

For each site, �h�x , t� and �p�x , t� are compared to the space-

time averages h̄ and p̄. The densities are positive, lying in the
first quadrant of R2, divided into three regions shown in Fig.
1�c�. The site x at time t is then defined to belong to a domain
according to the region �e, h, or p� containing
��h�x , t� ,�p�x , t��. In essence, the regions coarse grain on a
scale 
�wh,p. In this regime, they are insensitive to changes
in 
.

The domains are separated by walls, joining at triple
points, vortices �6�. A vortex has a sign +1 �−1�, if one en-
counters the domains in the order ehp following a small
cycle around the vortex counterclockwise �clockwise�. Pairs
of vortices of opposite signs are created and annihilated to-
gether. The domains rotate around the vortices, which are
relatively stable. In other words, the species invade the ap-
propriate neighboring domains so that the walls rotate

around the vortices. Similar structures have been identified
earlier in related systems �e.g., �6,11��. In three dimensions,
the vortices generalize to strings �6�.

First, consider static measures such as the domain wall
length from source to sink vortex. It has an exponential dis-
tribution, whose mean is drawn for different parameters in
Fig. 1�d�. Its ratio to its counterpart in uncorrelated random
arrangements with the same densities is shown. Patterns and
oscillations lead to walls with ���	100 lattice units �l.u.�.
This is more than 10 times larger than the smoothing width 

and also several times that in the random arrangements
��random=35 l.u.�. The coarse graining gives a measure of
patterns distinguishing between uncorrelated and patterned
states.

Next, turn to the spatially averaged densities ht and pt.
Figure 2�a� shows them as a function of time in three cases:
�i� A nonpatterned state with a small parasitoid population,
�ii� a state with patterns, and �iii� a small subsystem �Lsub
=64� out of a large system �L=512� with patterns. In the
patterned systems, there is a high-frequency oscillation
matching the angular velocity of single vortices and a slow
variation of the amplitude. Below, we explain both as a con-
sequence of a time-scale separation, connect them to the pat-
terns, and explain why the oscillations do not conform to the
usual limit cycles.

To build a description of the dynamics of the model using
aggregated variables, consider Poincaré maps �Fig. 3�. For
large enough systems ht+1 and pt+1 are unique functions of ht
and pt up to noise. Also by attractor reconstruction �24� we
find that the full system with 2L2 degrees of freedom coarse
grains into a two-dimensional one. The points in the maps lie
close to a two-dimensional surface, and for large enough L
�with many patterns in the system� even on the tangential

plane through the average �h̄ , p̄�. Based on these numerical
observations, the dynamics is linear in ht and pt,

ht+1 = ah,hht + ah,ppt + ch,

pt+1 = ap,hht + ap,ppt + cp. �2�

In other words, the observations imply that even though the
dynamics is expected to be nonlinear based on the mean-field

FIG. 1. �a� Patterned coexisting configuration with parameters
wh=3.0, wp=1.5, �h=0.63, �p=2.5, �=0.9, and L=512. Sites in e
are white, h is gray, and p is black. �b� Dominance regions of the

same state. �c� The definition of the coarse domains. For given h̄
and p̄, the first quadrant of the ��h ,�p� plane is divided into three
regions by three lines. That separating h- and p-dominated regions

starts from the average �h̄ , p̄� �the black dot�, goes towards increas-
ing �h and �p and is such that its continuation passes through the
origin. The other two lines form 120° angles with the first one and
each other. �d� The domain wall length ratio for different values of
�h and �p. Other parameters are �=0.9, wh=3.0, wp=1.5, L=512,
and 
=8.
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FIG. 2. �Color online� �a� Upper panel: The densities in the
patterned state for L=512 �solid lines�, and a subsystem with L
=64 �dashed lines�. See Fig. 1 for parameters. Lower panel: The
same in the homogeneous state for L=512 and �p=1.3. The para-
sitoid curve has been shifted for clarity. �b� The phase diagram of
the system. �1� Parasitoids extinct, �2� nonoscillatory coexistence,
�3� coexistence with noise-sustained oscillations, �4� coexistence in
a limit cycle, and �23� a transition zone between �2� and �3�. Black
�red� lines denote the boundaries for the spatial system �MF ap-
proximation�. The boundary between �1� and �2� coincides for the
two cases.
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�MF� approximation, in a large system with many patterns
the possible nonlinearities self-average out.

It is then useful to consider the expansion around the
average—a linear iterative map. In oscillatory cases, its ei-
genvalues form a conjugated pair �e�i. These are associated
with two time scales, the period and the decay rate of the
amplitude. Their ratio

� 
 /�ln �� �3�

tells whether dynamics is oscillatory or “just noisy.” ��1
indicates patterned systems and oscillatory dynamics. Figure
4 shows the typical behaviors of the two kinds of dynamics
observed depending on the presence or absence of patterns,
and whether one adds noise �as additional Gaussian uncorre-
lated noise terms on the right-hand side of Eq. �2�� to the
coarse-grained dynamical system to mimic the finite-L simu-
lations of the full spatial system. Note that in all cases the
fixed point is attractive.

So far we have given separately a temporal and a spatial
diagnosis of the pattern dynamics. Next we link these to-
gether. For ��I��x , t� small, they equal the spreading prob-
abilities, and the dynamics can be written as

ht+1 = ht + �x����hkh�x�Ceh�x,t� − �pkp�x�Chp�x,t��

and

pt+1 = �1 − ��pt + �p�x��kp�x�Chp�x,t� ,

where the influence of the connectivities is expressed by the
correlation functions

C���x,t� = 1
����x������x�,t����x + x�,t� .

A corresponding nonspatial approximation is

ht+1 = ht + ��ht,pt��1 − ht − pt�ht − ��ht,pt�htpt,

pt+1 = �1 − ��pt + ��ht,pt�htpt. �4�

This is an approximation of the usual MF form with the
interaction parameters ��h , p� and ��h , p� generalized to be
arbitrary functions of the instantaneous densities. They can
be nonlinear and they do not have to conform to the standard
MF nor to any ad-hoc approximations �25�. By an expansion

of Eqs. �4� around the fixed point �h̄ , p̄� one arrives at Eq. �2�
with

ah,h = 1 + � − 2�h̄ − �� + ��p̄ + �h�h̄�1 − h̄ − p̄� − �h�h̄p̄ ,

ah,p = − �� + ��h̄ − �p�h̄�1 − h̄ − p̄� − �p�h̄p̄ ,

ap,h = �p̄ + �h�h̄p̄ ,

ap,p = 1 − � + �h̄ + �p�h̄p̄ , �5�

where �, �, and their derivatives are evaluated at the fixed
point. The derivatives are necessary for consistency. The ma-

trix elements a
,
� and the densities h̄ and p̄ are measured
from the simulations. Since � and � are parameters, omitting
the derivatives would make Eqs. �5� overdetermined and thus
unsatisfiable. By keeping them, there are four equations and
four unknowns to be solved.

The effect of the nonzero derivatives is best illustrated by
a phase diagram, Fig. 2. In the spatially extended system,
there are three qualitative phases: The extinction of the para-
sitoids, nonoscillatory, and oscillatory coexistence. Except
for the extinction, the boundaries are not sharp. Instead, there
is a transition zone, defined via the time-scale ratio �Eq. �3��
as the region where 1���4. In MF, there is also a fourth
phase, absent here: Oscillatory coexistence in a limit cycle.
The phase structure resembles that in earlier work on a re-
lated model with only nearest-neighbor spreading �26–28�.
There, as well, oscillatory and nonoscillatory phases are re-
covered, the latter identified as a limit cycle using the pair
approximation. Based on our findings, it could also be noise
sustained.

Let us now compare the explained mechanism with recent
approaches. A possibility is to make the angular velocity of
the oscillation either amplitude or phase dependent �29,30�.
However, Eq. �2� does not allow for either dependence. An-
other one is to map the population model �19,20� to CGLE
�14�. An unstable fixed point is necessary for the mapping,
yielding a limit cycle.
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FIG. 3. Left-hand side, ht+1 over ht and pt �black� in a perspec-
tive showing the planar arrangement of points and its projection
onto the �ht , pt� plane �gray�. Right-hand side, the same for pt+1.
Parameters are as in Fig. 1.
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FIG. 4. The behavior of Eqs. �2� in the patterned �a,b,c� and in
the homogeneous state �d,e,f�. The coefficients a
,
� and c
 are
obtained from fits of Eq. �2� to simulation data. In both cases they
lead to an oscillatory convergence to the fixed point �FP� �a,d�. With
noise, the FP is never reached and the cases differ: In the homoge-
neous one this results in random fluctuations around the FP �e�; in
the patterned case the noise kicks the system out of the FP with
slow and oscillatory decay and leads to persistent oscillations dif-
ferent from limit cycles �b�. The host density as a function of time
corresponding to �b,e� is shown in �c,f�.
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To conclude, we have studied spatiotemporal dynamics of
a model of two kinds of interacting particles, in biological
terms hosts and parasitoids. A large parasitoid population
creates patterns and noisy oscillations of population sizes.
We have introduced a measure for the patterns, and ex-
plained the noisy oscillation as a consequence of a time-scale
separation. In other words, even with a limit cycle at the
well-mixed limit, the spatial case has stable dynamics with
long-lived oscillatory transients. This is due to spatial corre-
lations making the spreading rates functions of the instanta-
neous population densities. Since the type of oscillation de-
termines its properties �e.g., the fluctuating amplitude�,
which in turn affect vulnerability to extinction, the distinc-
tion is important. The connection offers a shortcut to study
the effect of, e.g., environment: It could be related directly
to the matrix elements in �2�, in contrast to a full form of
the interactions, lightening the analysis. We expect that the
observation of patterns and oscillations arising from local

dynamics and self-averaging—in finite systems since the
noise amplitude depends on system size—will find other ap-
plications beyond the biology-inspired model. They are not
restricted to only two species or two-dimensional systems,
since the analysis can be carried out also for more compli-
cated cases. There is no restriction to cyclic dynamics either,
nor to discrete-time systems since continuous-time ones can
be handled by considering snapshots taken at regular inter-
vals. Further examples of applications include chemical re-
actions on surfaces �3�, and metapopulations on disordered
and scale-free landscapes.
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